This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Two new 4-arylcoumarins from the seeds of Calophyllum polyanthum

Hao Zhong ${ }^{\text {ab, }}$ Jin-Lan Ruan ${ }^{\text {a }}$; Qing-Qiang Yao ${ }^{\text {b }}$
${ }^{\text {a }}$ Key Laboratory of Natural Medicinal Chemistry and Resources Evaluation of Hubei Province, College of Pharmacy, Tongji Medical Center of Huazhong University of Science and Technology, Wuhan, China ${ }^{\text {b }}$ Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China

Online publication date: 13 July 2010

To cite this Article Zhong, Hao, Ruan, Jin-Lan and Yao, Qing-Qiang(2010) 'Two new 4-arylcoumarins from the seeds of Calophyllum polyanthum', Journal of Asian Natural Products Research, 12: 7, 562 - 568
To link to this Article: DOI: 10.1080/10286020.2010.484806
URL: http://dx.doi.org/10.1080/10286020.2010.484806

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


ORIGINAL ARTICLE
 Two new 4-arylcoumarins from the seeds of Calophyllum polyanthum

Hao Zhong ${ }^{\text {ab }}$, Jin-Lan Ruan ${ }^{\text {a }}$ and Qing-Qiang Yao ${ }^{\text {b }}$ *
${ }^{a}$ Key Laboratory of Natural Medicinal Chemistry and Resources Evaluation of Hubei Province, College of Pharmacy, Tongji Medical Center of Huazhong University of Science and Technology, Wuhan 430030, China; ${ }^{b}$ Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250012, China

(Received 23 February 2010; final version received 8 April 2010)

Abstract

Two new 4-arylcoumarins, 7,4'-dihydroxy-6,8-dimethoxy-4-phenylcoumarin (1) and 7-hydroxy-6,8,4'-trimethoxy-4-phenylcoumarin (2), together with four known compounds were isolated from the seeds of Calophyllum polyanthum. The structures of the new compounds were determined by extensive spectroscopic analyses, and the structure of compound 2 was confirmed by X-ray crystallography analysis. Both new compounds exhibited significant cell protective activities against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced human umbilical vein endothelial cell damage.

Keywords: Calophyllum polyanthum; Guttiferae; 4-arylcoumarins; cell protecting activity

1. Introduction

The genus Calophyllum, which comprises more than 200 species, is widely distributed in the tropical rain forest. Four species of this genus, Calophyllum inophyllum L., Calophyllum membranaceum Gardn. et Champ, Calophyllum blancoi Planch et Triana, and Calophyllum polyanthum Wall. Et Choisy, are found in South and Southwest China [1]. A variety of coumarins [2-7] and xanthones [8-12] have been isolated from this genus, and some of them exhibited remarkable biological activities. The plant C. polyanthum Wall. Et Choisy (Guttiferae) is an arbor, which has been used to treat traumatic bleeding and to relieve pain in Chinese folk medicine [13]. Chemical studies conducted previously on C. polyanthum reported the major presence of coumarins [14,15]. In the current study, two new 4-arylcoumarins, 7,4'-dihydroxy-6,8-dimethoxy-4-phenyl-
coumarin (1) and 7-hydroxy-6,8,4'-tri-methoxy-4-phenylcoumarin (2), together with four known compounds, 7-hydroxy-4'-methoxy-4-phenylcoumarin (3), 6,7-dihydroxy-4'-methoxy-4-phenylcoumarin (4), 3,4-dihydroxybenzoic acid, 3-hydroxy-4-methoxybenzoic acid, were isolated from the seeds of C. polyanthum (Figure 1). The two new compounds $\mathbf{1}$ and $\mathbf{2}$ isolated from this plant material were tested for cell protecting activities against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced human umbilical vein endothelial cell (HUVEC) damage, and both compounds showed significant activities.

We present herein the isolation and structural elucidation of these new compounds, and their cell protective activities.

2. Results and discussion

7,4'-Dihydroxy-6,8-dimethoxy-4-phenylcoumarin (1), a white amorphous powder,

[^0]
$1 \mathrm{R}=\mathrm{OH}$
$2 \mathrm{R}=\mathrm{OCH}_{3}$

$3 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
$4 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}$

Figure 1. Structures of compounds 1-4.
had a molecular formula of $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$ as determined by HR-ESI-MS at m / z $315.0896[\mathrm{M}+\mathrm{H}]^{+}$with 11 degrees of unsaturation. The IR absorption bands revealed the presence of hydroxyl ($3215 \mathrm{~cm}^{-1}$), carbonyl ($1693 \mathrm{~cm}^{-1}$), and
aromatic (1608 and $1502 \mathrm{~cm}^{-1}$) functionalities. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) showed the presence of six aromatic proton signals at $\delta 7.42(2 \mathrm{H}, \mathrm{d}$, $J=8.4 \mathrm{~Hz}), \quad 6.94(2 \mathrm{H}, \mathrm{d}, \quad J=8.4 \mathrm{~Hz})$, 6.75 and 6.12 (each $1 \mathrm{H}, \mathrm{s}$), two methoxyl

Table 1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data of compounds $\mathbf{1}$ and $\mathbf{2}^{\mathrm{a}}$.

Position	1		2	
	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(J, \mathrm{~Hz})$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}(J, \mathrm{~Hz})$
2	160.5		159.9	
3	110.5	6.12 (s, 1H)	110.4	6.16 (s, 1H)
4	156.0		155.1	
4a	110.1		109.4	
5	103.4	6.75 (s, 1H)	102.8	6.72 (s, 1H)
6	145.7		145.1	
7	144.5		144.0	
8	135.6		135.1	
8a	143.8		143.3	
1^{\prime}	126.2		127.3	
2^{\prime}	130.6	7.42 (d, $J=8.4,1 \mathrm{H})$	129.9	7.54 (d, $J=8.1,1 \mathrm{H})$
3^{\prime}	116.1	6.94 (d, $J=8.4,1 \mathrm{H})$	114.2	7.12 (d, $J=8.1,1 \mathrm{H})$
4^{\prime}	159.4		160.2	
5^{\prime}	116.1	6.94 (d, $J=8.4,1 \mathrm{H})$	114.2	7.12 (d, $J=8.1,1 \mathrm{H})$
6^{\prime}	130.6	7.42 (d, $J=8.4,1 \mathrm{H})$	129.9	7.54 (d, $J=8.1,1 \mathrm{H})$
$6-\mathrm{OCH}_{3}$	56.4	3.71 (s, 3H)	55.8	3.70 (s, 3H)
$8-\mathrm{OCH}_{3}$	61.2	3.86 (s, 3H)	60.6	3.86 (s, 3H)
$7-\mathrm{OH}$		10.00 (s, 1H)		10.10 (s, 1H)
$4^{\prime}-\mathrm{OH}\left(\mathrm{OCH}_{3}\right)$		9.99 (s, 1H)	55.2	3.85 (s, 3H)

[^1]signals at $\delta 3.86$ and 3.71 (each $3 \mathrm{H}, \mathrm{s}$), and two exchangeable protons at $\delta 10.00$ and 9.99 (each $1 \mathrm{H}, \mathrm{s}$). The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1) resolved 17 carbon resonances comprising two methyls ($\delta 61.2,56.4$), six sp^{2} methines $[\delta 130.6(2 \times \mathrm{C}), 116.1$ $(2 \times \mathrm{C}), 110.5,103.4]$, and nine sp^{2} quaternary carbons (including one ester carbonyl) as categorized by the DEPT experiment. The aforementioned data suggested that compound 1 likely possessed a scaffold of 4-arylcoumarin [16].

Extensive analysis of the 2D NMR (HSQC and HMBC) spectra further confirmed the 4 -arylcoumarin feature for compound 1, and finally allowed us to establish its structure. After the assignment of the protons to their direct bonding carbons by the HSQC spectrum, the structure of $\mathbf{1}$ was confirmed by the following HMBC correlations. In the HMBC spectrum (Figure 2), the correlations from the hydroxyl at $\delta_{\mathrm{H}} 10.00$ to C6 (δ 145.7), C-7 (δ 144.5), and C-8 (δ 135.6) indicated that this hydroxyl was linked to C-7; the correlations from two methoxyl protons to $\mathrm{C}-6$ and $\mathrm{C}-8$ suggested that two methoxyls were located

Figure 2. Key HMBC $(\mathrm{H} \rightarrow \mathrm{C})$ correlations of compound $\mathbf{1}$.
at C-6 and C-8, respectively; combination of the correlations from $\mathrm{H}-5$ to $\mathrm{C}-4 \mathrm{a}$ (δ 110.1), C-6, C-7, and C-8a (δ 143.8) revealed the presence of a partial structure of a pentasubstituted benzene ring (ring A) for $\mathbf{1}$. The HMBC correlation of H-5/C-4 ($\delta 156.0$) suggested that a sp^{2} quaternary carbon C-4 was attached to C-4a. Furthermore, a p-hydroxyl substituted benzene ring (ring C) was attached to $\mathrm{C}-4$ by the HMBC correlations from $\mathrm{OH}-4^{\prime}$ to $\mathrm{C}-3^{\prime}(\delta$ 116.1), $\mathrm{C}-4^{\prime}(\delta 159.4)$, and $\mathrm{C}-5^{\prime}(\delta 116.1)$, from $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$ to $\mathrm{C}-1^{\prime}(\delta 126.2$), and from $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ to $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-4$. The HMBC correlations from H-3 (δ 6.12) to $\mathrm{C}-1^{\prime}, \mathrm{C}-4 \mathrm{a}$ and $\mathrm{C}-2$ ($\delta 160.5$) indicated that $\mathrm{C}-2, \mathrm{C}-3$, and $\mathrm{C}-4$ were linked in order. The aforementioned functionalities accounted for 10 degrees of unsaturation, and the remaining one degree of unsaturation required the presence of an additional ring in $\mathbf{1}$. According to the analysis of the IR and ${ }^{13} \mathrm{C}$ NMR (Table 1) spectral data, $\mathrm{C}-2$ ($\delta 160.5$) and $\mathrm{C}-8 \mathrm{a}$ ($\delta 143.8$) were likely linked as an ester to furnish a characteristic feature of coumarin. The structure of $\mathbf{1}$ was thus determined as depicted in Figure 1.

7-Hydroxy-6,8,4'-trimethoxy-4-phenylcoumarin (2) was obtained as a colorless crystal (in MeOH) with $\mathrm{mp} 192-$ $194^{\circ} \mathrm{C}$, and had the molecular formula of $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$ as determined by the HR-ESIMS ion at $\mathrm{m} / \mathrm{z} 329.1046[\mathrm{M}+\mathrm{H}]^{+}$. A combined analysis of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR (Table 1), HSQC, and HMBC spectra of 2 indicated that it was a closely related analog of $\mathbf{1}$ sharing the same skeleton, and the only structural difference between the two compounds was the presence of a methoxyl ($\delta_{\mathrm{H}} 3.85,3 \mathrm{H}, \mathrm{s}$) attached at $\mathrm{C}-4^{\prime}$ in $\mathbf{2}$ instead of a hydroxyl linked at $\mathrm{C}-4^{\prime}$ in

1. This conclusion was further confirmed by the HMBC correlations from the methoxyl proton signal at $\delta 3.85$ to $\mathrm{C}-4^{\prime}$ ($\delta 160.2$), from $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-5^{\prime}$ to $\mathrm{C}-1^{\prime}$, and from $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ to $\mathrm{C}-4^{\prime}$ and $\mathrm{C}-4$. A single crystal X-ray diffraction analysis was successfully conducted to confirm the

Figure 3. X-ray crystal structure of 2.
structure of 2 (Figure 3), which also supported the structure assignments of compound 1.

Four known compounds were identified as 7-hydroxy-4'-methoxy-4-phenylcoumarin (3) [17], 6,7-dihydroxy-4'-methoxy-4-phenylcoumarin (4) [18], 3,4-dihydroxy-
benzoic acid [19], and 3-hydroxy-4-methoxybenzoic acid [20], by comparison of spectroscopic data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and EIMS) with those reported in the literature.

In the current research, the cell protective activities against $\mathrm{H}_{2} \mathrm{O}_{2}$-induced HUVEC damage of compounds $\mathbf{1}$ and 2 were evaluated according to the reported protocol [21] with minor modification. HUVECs were cultured in vitro and divided into three groups as a control group, $\mathrm{H}_{2} \mathrm{O}_{2}$ injury group, and compounds $\mathbf{1}$ and $\mathbf{2}$ with different concentrations plus an $\mathrm{H}_{2} \mathrm{O}_{2}$ group. Survival rate of HUVECs was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. The results are shown in Table 2, in which compound $\mathbf{1}$ can significantly attenuate the $\mathrm{H}_{2} \mathrm{O}_{2}$-induced HUVEC damage at 1×10^{-5} and $4 \times 10^{-7} \mathrm{~mol} / \mathrm{l}$, while at $1 \times 10^{-5}, 2 \times 10^{-6}, 4 \times 10^{-7}$ and $8 \times 10^{-8} \mathrm{~mol} / \mathrm{l}$, compound 2 showed remarkable cell protective activities. However, both compounds have not exhibited in a dose-dependent manner.

3. Experimental

3.1 General experimental procedures

IR spectra were recorded on a PerkinElmer 577 spectrometer with KBr discs. UV spectra were recorded on a Varian CARY 300 Bio spectrophotometer.

Table 2. Effects of compounds $\mathbf{1}$ and $\mathbf{2}$ on HUVEC survival rate ${ }^{\text {a }}$.

Group	Concentration $(\mathrm{mol} / \mathrm{l})$	Absorbance (OD value)	Cell survival rate $(\%)$
Control group	-	0.99 ± 0.05	100
$\mathrm{H}_{2} \mathrm{O}_{2}$ injury group	-	0.83 ± 0.11	83
Compound 1	5×10^{-5}	0.88 ± 0.11	88
	1×10^{-5}	1.02 ± 0.15	102
	2×10^{-6}	0.87 ± 0.07	87
	4×10^{-7}	1.03 ± 0.13	103
Compound 2	8×10^{-8}	0.85 ± 0.04	85
	5×10^{-5}	0.82 ± 0.11	82
	1×10^{-5}	1.02 ± 0.05	102
	2×10^{-6}	1.05 ± 0.06	106
	4×10^{-7}	1.00 ± 0.15	100
	8×10^{-8}	1.01 ± 0.05	102

[^2]Specific rotations were made on a PerkinElmer 341 polarimeter at room temperature. NMR spectra were measured on a Bruker AM-600 spectrometer. ESI-MS and HR-ESI-MS were made on an Agilent 6330 LC-MS and a Waters Q-Tof Ultima Global mass spectrometer, respectively. Semi-preparative HPLC was performed on a Shimadzu LC-6AD pump equipped with a Shimadzu SPD-20A UV detector (254 nm) and a YMC-Pack ODS-A column $(250 \times 10 \mathrm{~mm}, ~ S-5 \mu \mathrm{~m}, \quad 12 \mathrm{~nm})$. Silica gel H (Qingdao Haiyang Chemical Co. Ltd, Qingdao, China), C_{18} reversedphase silica gel (150-200 mesh; Merck, Darmstadt, Germany), and Sephadex LH20 gel (Amersham Biosciences, Little Chanfolt, UK) were used for column chromatography (CC). Pre-coated silica gel GF_{254} plates (Qingdao Haiyang Chemical Co. Ltd) were used for TLC.

3.2 Plant material

The seeds of Colyanthum, collected from Xishuangbanna, Yunnan Province of China, were identified by Dr Wen-Zhao Tang, at the Institute of Materia Medica, Shandong Academy of Medical Sciences. A voucher specimen has been deposited in the Institute of Materia Medica, Shandong Academy of Medical Sciences (accession number: 20081202).

3.3 Extraction and isolation

The powder of the dried seeds of C. polyanthum $(5.0 \mathrm{~kg})$ was extracted with $95 \% \mathrm{EtOH}$ three times at room temperature. Evaporation of the solvent under reduced pressure provided 620 g of ethanolic extract, which was then partitioned between water and EtOAc to give an EtOAc-soluble fraction (380 g). The EtOAc-soluble fraction was chromatographed over a silica gel column eluted with petroleum ether-acetone (100:1 to $1: 1, \mathrm{v} / \mathrm{v}$) in gradient to give five fractions A-E. Fraction B (32 g) was subjected to a
column of an RP-18 silica gel ($\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}, 30: 70-60: 40$, v/v) in gradient to obtain three fractions B1-B3. Fraction B1 $(2.8 \mathrm{~g})$ was chromatographed over a column of Sephadex LH-20 eluted with MeOH to give four sub-fractions B1aB1d. Purification of fraction B1a $(1.2 \mathrm{~g})$ by CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{HCOOH}$ (100:10:0.1, v/v) gave 3-hydroxy-4-methoxybenzoic acid (85 mg). Fraction B1b (750 mg) was separated on a column of CC eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{HCOOH}$ (100:20:0.1, v/v) to give 3,4-dihydroxybenzoic acid (53 mg). Fraction D (4.5 g) was chromatographed over a column of an RP-18 silica gel ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 40: 60-$ 80:20, v/v) in gradient to obtain four fractions D1-D4. D2 (900 mg) was subjected to CC eluted with petroleum ether-EtOAc (3:1, v/v) to give $\mathbf{1}(15 \mathrm{mg})$ and $2(20 \mathrm{mg})$. Fraction D3 (1.5 g) was chromatographed by a column of Sephadex LH-20 eluted with MeOH to give three sub-fractions D3a-D3c. Purification of fraction D3c (530 mg) by semi-preparative HPLC ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}: 80: 20,3 \mathrm{ml} / \mathrm{min}$) gave $3(25 \mathrm{mg})$ and $4(18 \mathrm{mg})$.

3.3.1 7,4'-Dihydroxy-6,8-dimethoxy-4phenylcoumarin (1)

Obtained as a white amorphous powder, UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon): 315(3.78) \mathrm{nm}$. IR (KBr) $\nu_{\max }$: 3215, 1693, 1608, $1502 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data: see Table 1. Positive-ion ESI-MS: $m / z 315.1[\mathrm{M}+\mathrm{H}]^{+}$. HR-ESI-MS: m / z $315.0896[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{6}$, 315.0869).

3.3.2 7-Hydroxy-6,8,4' ${ }^{\text {-trimethoxy-4- }}$ phenylcoumarin (2)

Obtained as a colorless crystal (in MeOH), $\mathrm{mp} 192-194^{\circ} \mathrm{C}$. UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon)$: 307 (3.85) nm. IR (KBr) $\nu_{\max }: 3319,1687$, $1606,1500 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data: see Table 1. Positive-ion ESI-MS: m / z $329.1[\mathrm{M}+\mathrm{H}]^{+}$. HR-ESI-MS: m / z
$329.1046[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{6}$, 329.1025).

3.4 X-ray crystallography experiment

Empirical formula: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$; formula weight: 328.31; temperature: 293(2) K; wavelength: $0.71073 \AA$; crystal system and space group: triclinic, $P-1$; unit cell dimensions: $a=9.3903(11) ~ \AA$ $\alpha=80.089(2)^{\circ}, b=9.8323(11) \AA \beta=$ $67.881(2)^{\circ}, \quad c=9.8472(11) ~ \AA \quad \gamma=$ 67.357(2) ${ }^{\circ}$; volume: 776.95(15) $\AA^{3} ; Z$, calculated density: $2,1.403 \mathrm{mg} / \mathrm{m}^{3}$; absorption coefficient: $0.106 \mathrm{~mm}^{-1}$; $F(000)$: 344; crystal size: $0.411 \times$ $0.369 \times 0.237 \mathrm{~mm} ; \theta$ range for data collection: 2.23-26.00 ; limiting indices: $-11 \leq h \leq 7,-12 \leq k \leq 11,-12 \leq$ $l \leq 8$; reflections collected/unique: $4273 / 2995 \quad[R($ int $)=0.0219]$; completeness to $\theta=26.00$: 98.3%; absorption correction: empirical; max. and min. transmission: 1.00000 and 0.49765 ; refinement method: full-matrix least squares on F^{2}; data/restraints/parameters: 2995/0/ 225; goodness-of-fit on F^{2} : 1.060; final R indices $\quad[I>2 \sigma(I)]: \quad R 1=0.0472$, $w R 2=0.1309 ; R$ indices (all data): $R 1=0.0542, w R 2=0.1374$; extinction coefficient: $0.015(5)$; largest difference peak and hole: 0.200 and -0.255 e \AA^{-3}. Crystallographic data of compound 2 have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CCDC 764242).

3.5 Cell protecting evaluation

HUVECs digested by 0.25% trypsin were made into a single-cell suspension in RPMI-1640 medium with 10% fetal calf serum, HUVECs were cultured for 24 h at a density of 1×10^{5} cells per well in 96well plates with a humid atmosphere of 5% CO_{2} and 95% air at $37^{\circ} \mathrm{C}$. Then, cells were pretreated with various concentrations of the compounds for 24 h , followed by exposure to $1 \times 10^{-4} \mathrm{~mol} / 1$ of $\mathrm{H}_{2} \mathrm{O}_{2}$ in
the presence of the same concentrations of the compounds for another 4 h ; in this step, the control group and $\mathrm{H}_{2} \mathrm{O}_{2}$ injury group were set up. To produce oxidative stress, $\mathrm{H}_{2} \mathrm{O}_{2}$ was freshly prepared from 30% stock solution prior to each experiment. Cell survival was evaluated by MTT reduction. Briefly, after 4 h exposure, $10 \mu \mathrm{l}$ of MTT ($5 \mathrm{mg} / \mathrm{ml}$ in PBS) was added to each well and the cells were incubated at $37^{\circ} \mathrm{C}$ for 4 h . The supernatants were aspirated carefully and 200μ l of dimethyl sulfoxide was added to each well to dissolve the precipitate and the absorbance (OD) at 535 nm was measured with a microplate reader (Victor 1420, Waltham, Massachusetts, USA). Cell survival rate was calculated according to the OD value. Cell survival rate $(\%)=(\mathrm{OD}$ value for the test product group/OD value for the control group) $\times 100 \%$.

Acknowledgements

This project was financially supported by the Key Laboratory for Modern Medicine and Technology of Shandong Province.

References

[1] Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita, Flora Reipublicae Popularis Sinicae (Science Press, Beijing, 1990), Vol. 50, p. 82.
[2] C. Ito, M. Itoigawa, Y. Mishina, V.C. Filho, F. Enjo, H. Tokuda, H. Nishino, and H. Furukawa, J. Nat. Prod. 66, 368 (2003).
[3] D. Guilet, J.-J. Helesbeux, D. Seraphin, T. Sevenet, P. Richomme, and J. Bruneton, J. Nat. Prod. 64, 563 (2001).
[4] D. Guilet, D. Seraphin, D. Rondeau, P. Richomme, and J. Bruneton, Phytochemistry 58, 571 (2001).
[5] S.G. Cao, K.Y. Sim, J. Pereira, and S.H. Goh, Phytochemistry 47, 773 (1998).
[6] K.R. Gustafson, H.R. Bokesch, R.W. Fuller, J.H. Cardellina, M.R. Kadushin, D.D. Soejarto, and M.R. Boyd, Tetrahedron Lett. 35, 5821 (1994).
[7] H.R. Dharmaratne, S. Sotheeswaran, S. Balasubramaniam, and E.R. Waight, Phytochemistry 24, 1553 (1985).
[8] C. Ito, M. Itoigawa, Y. Mishina, V.C. Filho, T. Mukainaka, H. Tokuda, H. Nishino, and H. Furukawa, J. Nat. Prod. 65, 267 (2002).
[9] C. Morel, D. Seraphin, J.-M. Oger, M. Litaudon, T. Sevenet, P. Richomme, and J. Bruneton, J. Nat. Prod. 63, 1147 (2000).
[10] H. Ranjith, W. Dharmaratne, W.M. Nishanthi, and M. Wijesinghe, Phytochemistry 46, 1293 (1997).
[11] M. Iinuma, H. Tosa, N. Toriyama, T. Tanaka, T. Ito, and V. Chelladurai, Phytochemistry 43, 681 (1996).
[12] M. Iinuma, H. Tosa, T. Tanaka, and S. Yonemori, Phytochemistry 38, 725 (1995).
[13] C.R. Han, X.P. Song, and G.Y. Chen, Chin. J. Org. Chem. 23, 212 (2003).
[14] C.H. Ma, B. Chen, H.Y. Qi, B.G. Li, and G.L. Zhang, J. Nat. Prod. 67, 1598 (2004).
[15] J.J. Chen, M. Xu, S.D. Luo, H.Y. Wang, and J.C. Xu, Acta Bot. Yunan 23, 521 (2001).
[16] M.D. Agostino, F.D. Simone, A. Dini, and C. Pizza, J. Nat. Prod. 53, 161 (1990).
[17] Y.L. Garazd, M.M. Garazd, and V.P. Khilya, Chem. Nat. Compd. 41, 663 (2005).
[18] S.K. Mukerjee, T. Saroja, and T.R. Seshadri, Indian J. Chem. 7, 671 (1969).
[19] C.C. Zhu, K.J. Wang, Z.Y. Wang, and N. Li, Bull. Korean Chem. Soc. 31, 7707 (2003).
[20] Y.T. Tung, J.H. Wu, Y.H. Kuo, and S.T. Chang, Bioresour. Technol. 98, 1120 (2007).
[21] S.T. Ding, H.T. Liu, W.M. Li, X.Y. Li, and C. Yu, Chin. Pharmacol. Bull. 25, 725 (2009).

[^0]: *Corresponding authors. Email: Jinlan8152@163.com; yqingqiang @yahoo.com

[^1]: Note: ${ }^{\text {a }}$ Data were measured in DMSO- d_{6} at $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$.

[^2]: Note: ${ }^{\mathrm{a}} n=5, X \pm$ SD.

